Premier Magnesia and Thioguard Extend our Thanks to Mary Evans for her Dedication to the Wastewater Treatment Industry


As we begin to emerge from the challenging times of this past year, it is
inspiring to be reminded of the tremendous works of the leaders around us.
On behalf of the Thioguard Team and the Premier Magnesia family,
Congratulations to Mary Evans on being selected for the
2021 W. Walter Chiang Lifetime Achievement Award



The Water Environment Association of Texas (WEAT) recently announced Mary Evans as this year’s recipient of the W. Walter Chiang Lifetime Achievement Award. This award recognizes a current or past WEAT member who has demonstrated continual and tireless contributions toward the improvement of the water environment throughout a long, distinguished career in the wastewater treatment industry and in WEAT/WEF.

Mary Evans has had a very distinguished career serving the wastewater industry, including serving for over 10 years as the South-Central Regional Account Manager for Premier Magnesia, LLC. She is an outstanding leader for the industry, serving as a local Section President, WEAT President, WEAT Delegate to the WEF HOD, and many, many years in participation and as a leader for the WEAT and WEF Challenge Laboratory events and on numerous committees that look out for the best interests of WEAT in this challenging environment.

Mary has also worked with numerous utility staff for many years to educate them on appropriate laboratory techniques, not only for the optimization of their plant processes, but also for their plant compliance issues and operator certification/licensing opportunities. There are scores of folks who will tell you that Mary’s support was an integral key to their success in obtaining and increasing their operator licenses. Mary has exemplified the goals and vision of WEAT throughout her life, and she is most deserving of this recognition.

The Water Environment Association of Texas (WEAT) is an open association of water environmental professionals, practitioners and operations specialists, and public officials with a broad range of expertise working together to foster members’ professional growth and development, educate the public on water quality issues, and benefit society through protection and enhancement of the water environment. For more information, visit https://www.weat.org.

THIOGUARD is a leading supplier of technical grade magnesium hydroxide and magnesium oxide to the wastewater treatment industry. Thioguard’s Total System Treatment is a non-hazardous application with no required reportable quantities, and is owned, mined and produced in the USA. Thioguard provides more alkalinity than any other additive, it is effective at treating odors, corrosion and FOG (fats, oils and grease), and also provides positive plant benefits for nitrification, biosolids production, digester performance, and chlorination. Thioguard is a division of Premier Magnesia, LLC. For more information, visit https://www.thioguard.com.
 

Can Odor Control and Nutrient Treatment and Recovery Co-Exist?

While Nitrates and Iron have been a common part of the odor control landscape in the past, the growing emphasis on nutrient treatment and resource recovery have made Thioguard technical grade magnesium hydroxide a more compelling and cost effective alternative. Calcium Nitrate products are typically used in many of the nation’s wastewater collection systems, and are used for one thing odor control. Unfortunately, there are multiple costly unintended consequences with the use of nitrate products. In addition, while nitrate use may temporarily address H2S odor problems, nitrate products are of little or no use in combatting corrosion, which is a tremendous problem, both in-plant and throughout every segment of wastewater treatment infrastructure.

NITRATE USE ENCOURAGES
UNWANTED BIOCHEMICAL REACTIONS…

where you don’t want them to occur.

Think denitrification…which consumes organics, and produces nitrogen gas N2 and carbon dioxide CO2, all seemingly innocuous by-products of Calcium Nitrate’s intended use as an odor control technology…but let’s take a closer look…

  1. Nitrates upset the Bio-P process at your plant
    The use of nitrates in the collection system alter the chemical and biological conditions of the collection system, which would otherwise facilitate the formation and transport of VFAs to the treatment plant, where they can be used by PAOs in Bio-P processes.

As VFAs (Volatile Fatty Acids) are eliminated with calcium nitrate addition, VFAs are therefore not available for PAOs (phosphorus accumulating organisms) for phosphate removal at the wastewater treatment plant.

  1. Nitrates contribute to the formation of F.O.G.
    The addition of nitrates contributes to the accumulation of an odorous film, often referred to as a F.O.G. (Fats, Oils and Grease) mat in pumping stations and at your plant. Blockages associated with F.O.G. have been shown to be the greatest contributors to O&M costs including energy consumption, maintenance costs, and Sanitary Sewer Overflows (SSOs).
  1. Nitrates contribute to Gas Binding in the Collection System
    The transfer of wastewater can result in the release of gases such as O2 – Oxygen, CO2 – Carbon Dioxide, N2 – Nitrogen Gas, H2S – Hydrogen Sulfide, CH4 – Methane, VOCs – Volatile Organic Compounds, and VOSCs – Volatile Organic Sulfur Compounds, among others. Some of these gases are drawn into the system through pumping and ventilation, while others are generated within the system either chemically or biologically. These gases can result in the development of gas binding in the system, and are dramatically exacerbated with the utilization of calcium nitrate.
  2. Nitrates negatively impact conventional processes
    The addition of nitrates is not an exact science, and unfortunately, every step along the way there are costly unintended consequences. Add too little, and you’re facing odor problems. Add too much, and you’re faced with the formation of unwanted bubble-forming gases (N2 and CO2 from denitrification) in your settling tank, exactly where you DON’T WANT IT, continuing the formation of F.O.G. mat, (as well as creating an environment unfavorable to your biological processes). This often results in increased metal salts usage or increased polymer usage and associated increases in costs.

NITRATE ADDITION REQUIRES MULTIPLE FEED LOCATIONS, THIOGUARD ONLY REQUIRES ONE

Calcium Nitrate has a short half-life in sewers, and therefore many addition locations are required to achieve adequate system-wide control. This requires several addition locations, and corresponding higher costs and operational oversight. In contrast, a single Thioguard Feed Unit can often replace several nitrate feed stations, and maintain a relatively constant pH level throughout.

THIOGUARD HELPS PREVENT CORROSION

Maintaining a constant surface pH of 6-8 can reduce the rate of corrosion by as much as 100X. The cost of simply ignoring this problem is monumental and Thioguard is the only commonly used product that has a direct mechanism to increase surface pH and prevent corrosion.

Supplement Alkalinity without the Hidden Operational Costs

LIME – A CLASSIC “PAY NOW OR PAY LATER” SITUATION

Lime may appear initially to be an affordable way to increase required alkalinity at your plant. However, as with so many other purchase decisions, this “up front bargain” turns into added costs and aggravation down the road. Your plant will NEVER achieve sustained, controlled alkalinity through the addition of lime, or caustic soda for that matter. ONLY THIOGUARD and THIOGUARD ΩMEGA-S technical grade magnesium hydroxide provides an effective, system-wide, non-hazardous alternative to Lime. By converting to Thioguard, wastewater utilities are consistently able to eliminate hundreds of hazardous bulk tanker truck deliveries, thereby reducing insurance costs. And, when it comes to safety, technical grade magnesium hydroxide is 100% non-hazardous.

LIME (Ca(OH)2) IS A HIGHLY CORROSIVE, DANGEROUS CHEMICAL…

Lime is listed on the Special Health Hazard Substance List, and on contact, can burn the skin and the eyes, and can cause permanent lung damage through inhalation. The same properties that can cause these harmful effects in humans will cause similar negative effects in your treatment processes.

Lime (calcium hydroxide) is extremely hazardous to use, detrimental to personnel safety and creates “Kill Zones” in biological processes. Moreover, adding lime to wastewater upsets alkalinity supplementation, by converting soluble forms of alkalinity to insoluble forms. These potential “Kill Zones” are responsible for driving up costs significantly. The clear solution is to eliminate your “Kill Zones” entirely, by switching to Thioguard.

MORE ALKALINITY PER GALLON

Compared to Lime (or caustic soda), Thioguard is capable of supplying significantly more alkalinity in a bio-available form to a microbial wastewater system without adversely affecting pH. This creates a more suitable environment for bioremediation of BOD and nutrients like nitrogen and phosphorus. Because magnesium supplies a light-weight, divalent cation, unlike the monovalent sodium in caustic, and heavier calcium in lime, Thioguard generates a denser, more easily dewatered sludge, with a higher percentage of cake solids – without the “bulking” commonly associated with Lime.

Supplement Alkalinity without the Hidden Operational Costs

LIME – A CLASSIC “PAY NOW OR PAY LATER” SITUATION

Lime may appear initially to be an affordable way to increase required alkalinity at your plant. However, as with so many other purchase decisions, this “up front bargain” turns into added costs and aggravation down the road. Your plant will NEVER achieve sustained, controlled alkalinity through the addition of lime, or caustic soda for that matter. ONLY THIOGUARD and THIOGUARD ΩMEGA-S technical grade magnesium hydroxide provides an effective, system-wide, non-hazardous alternative to Lime. By converting to Thioguard, wastewater utilities are consistently able to eliminate hundreds of hazardous bulk tanker truck deliveries, thereby reducing insurance costs. And, when it comes to safety, technical grade magnesium hydroxide is 100% non-hazardous.

LIME (Ca(OH)2) IS A HIGHLY CORROSIVE, DANGEROUS CHEMICAL…

Lime is listed on the Special Health Hazard Substance List, and on contact, can burn the skin and the eyes, and can cause permanent lung damage through inhalation. The same properties that can cause these harmful effects in humans will cause similar negative effects in your treatment processes.

Lime (calcium hydroxide) is extremely hazardous to use, detrimental to personnel safety and creates “Kill Zones” in biological processes. Moreover, adding lime to wastewater upsets alkalinity supplementation, by converting soluble forms of alkalinity to insoluble forms. These potential “Kill Zones” are responsible for driving up costs significantly. The clear solution is to eliminate your “Kill Zones” entirely, by switching to Thioguard.

MORE ALKALINITY PER GALLON

Compared to Lime (or caustic soda), Thioguard is capable of supplying significantly more alkalinity in a bio-available form to a microbial wastewater system without adversely affecting pH. This creates a more suitable environment for bioremediation of BOD and nutrients like nitrogen and phosphorus. Because magnesium supplies a light-weight, divalent cation, unlike the monovalent sodium in caustic, and heavier calcium in lime, Thioguard generates a denser, more easily dewatered sludge, with a higher percentage of cake solids – without the “bulking” commonly associated with Lime.

How big is your Caustic Kill Zone?

CAUSTIC SODA IS A HIGHLY CORROSIVE CHEMICAL…
Caustic Soda is listed on the Special Health Hazard Substance List, and on contact, can burn the skin and the eyes, and can cause permanent lung damage through inhalation. The same properties that can cause these harmful effects in humans are causing similar negative effects in your treatment processes.

Caustic Soda (Sodium Hydroxide) is hazardous to use, detrimental to personnel safety and biological processes. Moreover, adding sodium to wastewater upsets flocculation, settling, clarification and dewatering processes, driving up the need for polymer or metal salt use. All of these potential “Kill Zones” are responsible for driving up costs. The clear solution is to eliminate your “Kill Zones” entirely, by switching to Thioguard.

THIOGUARD and THIOGUARD ΩMEGA-S technical grade magnesium hydroxide is an effective, non-hazardous alternative to Caustic Soda. By converting to Thioguard, wastewater utilities are able to eliminate hundreds of hazardous bulk tanker truck deliveries, thereby reducing insurance costs. When it comes to safety, technical grade magnesium hydroxide is clearly superior.

MORE ALKALINITY PER GALLON

Compared to Caustic Soda (or lime), Thioguard is capable of supplying significantly more alkalinity in a bio-available form to a microbial wastewater system without adversely affecting pH. This creates a more suitable environment for bioremediation of BOD and nutrients like nitrogen and phosphorus. Because magnesium supplies a light-weight, divalent cation, unlike the monovalent sodium in caustic, and heavier calcium in lime, Thioguard generates a denser, more easily dewatered sludge, with a higher percentage of cake solids.

How Alkalinity Affects Nitrification

Use alkalinity profiling in wastewater operations to control
biological activity and optimize process control

The Water Environment Federation’s new Operations Challenge laboratory event will determine alkalinity needs to facilitate nitrification. Operators will evaluate alkalinity and ammonia by analyzing a series of samples similar to those observed in water resource recovery facilities. 

This event will give operators an understanding of how alkalinity works in the wastewater treatment process to facilitate nitrification, as well as the analytical expertise to perform the tests onsite. This provides the real-time data needed to perform calculations, since these analyses typically are performed in a laboratory that can present a delay in the data. 

What is alkalinity?
The alkalinity of water is a measure of its capacity to neutralize acids. It also refers to the buffering capacity, or the capacity to resist a change in pH. For wastewater operations, alkalinity is measured and reported in terms of equivalent calcium carbonate ( CaCO3). Alkalinity is commonly measured to a certain pH. For wastewater, the measurement is total alkalinity, which is measured to a pH of 4.5 SU. Even though pH and alkalinity are related, there are distinct differences between these two parameters and how they can affect your facility operations.

Alkalinity and pH
Alkalinity is often used as an indicator of biological activity. In wastewater operations, there are three forms of oxygen available to bacteria: dissolved oxygen (O2), nitrate ions (NO3-), and sulfate ions (SO42-). Aerobic metabolisms use dissolved oxygen to convert food to energy. Certain classes of aerobic bacteria, called nitrifiers, use ammonia (NH3) for food instead of carbon-based organic compounds. This type of aerobic metabolism, which uses dissolved oxygen to convert ammonia to nitrate, is referred to as “nitrification.” Nitrifiers are the dominant bacteria when organic food supplies have been consumed.

Further processes include denitrification, or anoxic metabolism, which occurs when bacteria utilize nitrate as the source of oxygen and the bacteria use nitrate as the oxygen source. In an anoxic environment, the nitrate ion is converted to nitrogen gas while the bacteria converts the food to energy. Finally, anaerobic conditions will occur when dissolved oxygen and nitrate are no longer present and the bacteria will obtain oxygen from sulfate. The sulfate is converted to hydrogen sulfide and other sulfur-related compounds. 

Alkalinity is lost in an activated sludge process during nitrification. During nitrification, 7.14 mg of alkalinity as CaCO3 is destroyed for every milligram of ammonium ions oxidized. Lack of carbonate alkalinity will stop nitrification. In addition, nitrification is pH-sensitive and rates of nitrification will decline significantly at pH values below 6.8. Therefore, it is important to maintain an adequate alkalinity in the aeration tank to provide pH stability and also to provide inorganic carbon for nitrifiers. At pH values near 5.8 to 6.0, the rates may be 10% to 20% of the rate at pH 7.0. A pH of 7.0 to 7.2 is normally used to maintain reasonable nitrification rates, and for locations with low-alkalinity waters, alkalinity is added at the water resource recovery facility to maintain acceptable pH values. The amount of alkalinity added depends on the initial alkalinity concentration and amount of NH4-N to be oxidized. After complete nitrification, a residual alkalinity of 70 to 80 mg/L as CaCO3 in the aeration tank is desirable. If this alkalinity is not present, then alkalinity should be added to the aeration tank.  

Why is alkalinity or buffering important?
Aerobic wastewater operations are net-acid producing. Processes influencing acid formation include, but are not limited to 

  • biological nitrification in aeration tanks, trickling filters and rotating biological contactors
  • the acid formation stage in anaerobic digestion;
  • biological nitrification in aerobic digesters;
  • gas chlorination for effluent disinfection; and
  • chemical addition of aluminum or iron salts.

In wastewater treatment, it is critical to maintain pH in a range that is favorable for biological activity. These optimum conditions include a near-neutral pH value between 7.0 and 7.4. Effective and efficient operation of a biological process depends on steady-state conditions. The best operations require conditions without sudden changes in any of the operating variables. If kept in a steady state, good flocculating types of microorganisms will be more numerous. Alkalinity is the key to steady-state operations. The more stable the environment for the microorganisms, the more effectively they will be able to work. In other words, a sufficient amount of alkalinity can provide for improved performance and expanded treatment capacity.

How much alkalinity is needed?
To nitrify, alkalinity levels should be at least eight times the concentration of ammonia in wastewater. This value may be higher for untreated wastewater with higher-than-usual influent ammonia concentrations. The theoretical reaction shows that approximately 7.14 mg of alkalinity (as CaCO3) is consumed for every milligram of ammonia oxidized. A rule of thumb is an 8-to-1 ratio of alkalinity to ammonia. Inadequate alkalinity could result in incomplete nitrification and depressed pH values in the facility. Plants with the ability to denitrify can add back valuable alkalinity to the process, and those values should be taken into consideration when doing mass balancing. (For Operations Challenge event, the decision has been made to not incorporate the denitrification step in process profiling.) To determine alkalinity requirements for plant operations, it is critical to know the following parameters:

  • influent ammonia, in mg/L,
  • influent total alkalinity, in mg/L, and
  • effluent total alkalinity, in mg/L.

For every mg/L of converted ammonia, alkalinity decreases by 7.14 mg/L. Therefore, to calculate theoretical ammonia removal, multiply the influent (raw) ammonia by 7.14 to determine the minimum amount of alkalinity needed for ammonia removal through nitrification. 

For example:

Influent ammonia = 36 mg/L

36 mg/L ammonia ´ 7.14 mg/L alkalinity to nitrify = 257 mg/L alkalinity requirements

257 mg/L is the minimum amount of alkalinity needed to nitrify 36 mg/L of influent ammonia. 

Once you have calculated the minimum amount of alkalinity needed to nitrify ammonia in wastewater, compare this value against your measured available influent alkalinity to determine if enough is present for complete ammonia removal, and how much (if any) additional alkalinity is needed to complete nitrification. 

For example:

Influent ammonia alkalinity needs for nitrification = 257 mg/L

Actual measured influent alkalinity = 124 mg/L

257 – 124 = 133 mg/L deficiency 

In this example, alkalinity is insufficient to completely nitrify influent ammonia, and supplementation through denitrification or chemical addition is required. Remember that this is a minimum — you still need some for acid buffering in downstream processes, such as disinfection.

Bioavailable alkalinity
Most experts recommend an alkalinity residual (effluent residual) of 75 to 150 mg/L. As previously identified, total alkalinity is measured to a pH endpoint of 4.5. For typical wastewater treatment applications, operational pH never dips that low. When measuring total alkalinity, the endpoint reflects how much alkalinity would be available at a pH of 4.5. At higher pH values of 7.0 to 7.4 SU, where wastewater operations are typically conducted, not all alkalinity measured to a pH of 4.5 is available for use. This is a critical distinction for the bioavailability of alkalinity. Therefore, in addition to the alkalinity required for nitrification, additional alkalinity must be available to maintain the 7.0 to 7.4 pH. Typically, the amount of residual alkalinity required to maintain pH near neutral is between 70 and 80 mg/L as CaCO3.

Proper alkalinity levels for treatment
Alkalinity is a major chemical requirement for nitrification and can be a useful and beneficial tool for use in process control.
 Several things to keep in mind:

  • Alkalinity provides an optimal environment for microscopic organisms whose primary function is to reduce waste.
  • In activated sludge, the desirable microorganisms are those that have the capability, under the right conditions, to clump and form a gelatinous floc that is heavy enough to settle. The formed floc or sludge can be then be characterized as having a sludge volume index.
  • The optimum pH range is between 7.0 and 7.4. Although growth can occur at pH values of 6 to 9, it does so at much reduced rates (see Figures 1 and 2). It is also quite likely that undesirable forms of organisms will form at these ranges and cause bulking problems. The optimal pH for nitrification is 8.0, with nitrification limited below pH 6.0.
  • Oxygen uptake is optimal at a 7.0 to 7.4 pH. Biochemical oxygen demand removal efficiency also decreases as pH moves outside this optimum range.

Please Note: The information provided in this article is designed to be educational. It is not intended to provide any type of professional advice including without limitation legal, accounting, or engineering. Your use of the information provided here is voluntary and should be based on your own evaluation and analysis of its accuracy, appropriateness for your use, and any potential risks of using the information. The Water Environment Federation (WEF), author and the publisher of this article assume no liability of any kind with respect to the accuracy or completeness of the contents and specifically disclaim any implied warranties of merchantability or fitness of use for a particular purpose. Any references included are provided for informational purposes only and do not constitute endorsement of any sources.

Importance of Magnesium for Man, Plant, and Soil

The map shown above (Figure 1) outlines the areas of magnesium deficient soil in the United States. Magnesium deficiency in food and water supplies is becoming a hot topic and has been more widely studied in recent years. Several countries have already begun adding supplemental magnesium to their own water supply.

MAGNESIUM IN PLANT PHYSIOLOGY AND YIELD FORMATION

Magnesium occupies the central position of the chlorophyll molecule, the green pigment which enables plants to utilize solar energy for the production of organic matter (Figure 2).

It is, therefore, not surprising that an adequate Mg supply to plants may act as an activator of important enzymes in phosphorylation, the fundamental process of energy transfer in the plant.


MAGNESIUM IN SOIL

Although the parent materials of some soils may contain very high amounts of magnesium (e.g. basalt, peridotite and dolomite), the total Mg contents of most soils are rather low, namely between 0.05% and 0.5% Mg. Of this amount only a fraction is easily available to the plant, i.e. the magnesium present in the soil solution and the exchangeable Mg absorbed to clay minerals or soil organic matter. High levels of Mg are found in some saline and alkali soils and in soils with a high content of magnesium carbonate. But many of the agricultural soils are low in exchangeable magnesium, particularly those in the humid zones of temperate and tropical climates. High rainfall and soil acidity together with low cation exchange capacity increase the mobility of magnesium and cause heavy losses by leaching. Under these conditions the Mg status of the soils is poor.

In tropical Latin America, for instance, 731 million hectares are deficient in magnesium (or 49% of all soils) mostly classified as Oxisols and Utisols (Ferralsols & Acisols according to the FAO-UNESCO soil map of the world). In Brazil, Mg deficiency symptoms on annual crops have been recorded as frequently as potassium deficiency. In the humid tropics and the wooded savannah of Africa, the soils with low base status which are presently or potentially deficient in Mg cover 44% of the area. In tropical Asia, they amount to 59%.

Usually, soils are considered deficient in plant available magnesium when the content of exchangeable magnesium is below 3-4 mg/100 g of soil. The critical values differ according to the soil texture. They are higher in soils with high content of 2:1 layer clay minerals and high organic matter. An example of Mg soil test rating for the Federal Republic of Germany is given in Table 1.

As for other plant nutrients, the status of available magnesium in the soil cannot be considered independently. It is influenced by the contents of other cations, such as calcium (Ca) and potassium (K), and by the soil acidity (pH). The relationship between Mg deficiency of oats and the pH of sandy soils is illustrated in Figure 3.

The occurrence of Mg deficiency symptoms was lowest at about pH 5, indicating an optimum of Mg availability at this pH range. At lower pH, the uptake of Mg is reduced due to the increased concentration of hydrogen (H) and aluminum (al) ions. In very acid tropical soils, mainly formed by sesquioxides of aluminum and iron, the addition of magnesium fertilizers to the soil reduces Al toxicity. At high soil pH, the competition of Ca ions is responsible for the lower Mg uptake. Regardless of the pH, ammonium (NH4) and potassium (K) affect the uptake of magnesium. Thus, heavy dressings of ammonium sulphate or potassium chloride can aggravate Mg deficiency.

MAGNESIUM UPTAKE BY PLANTS IN RELATION TO POTASSIUM (K) UPTAKE

Plants take up magnesium in smaller quantities than potassium, although the contents of exchangeable Mg in the soil and the Mg concentration of the soil solution are often higher than the corresponding values for K. There is antagonism between K and Mg but it seems to be confined to the deficiency range of nutrient availability. Under such conditions, increasing the supply of one nutrient aggravates the deficiency of the other. Usually high contents of Mg can be found in plants deficient in K (plants try to keep the sum of the cations K, Ca, Mg, Na fairly constant). Application of potash fertilizers to correct K deficiency leads to a gradual decrease of magnesium contents in the plant. Provided that the soil is well supplied with available Mg, leaf magnesium will not fall off to dangerously low values but remains above the critical level even at the high K rates needed to exploit the genetic yield potential of the plant (Figure 4).

When both K and Mg are deficient, it is advisable to improve the magnesium status of the soil by adequate Mg fertilizer dressings before applying heavy doses of K.

MAGNESIUM DEFICIENCY AND ITS CORRECTION

Magnesium deficiency symptoms are more and more observed not only on Mg defined soils but also on soils originally well supplied with this nutrient. This is due to higher Mg uptake by high yielding crops under intensive cultivation.

If the requirements are not met by the magnesium supply of the soil or by the application of Mg-containing fertilizers, plants will suffer from Mg deficiency and may show deficiency symptoms at various growth stages.

As magnesium is rather mobile and can be easily transported to the actively growing plant parts, Mg deficiency generally first becomes visible on the older leaves. Although the symptoms differ between plant species, some general characteristics are apparent.

Mg deficiency becomes manifest by pale discoloration of the leaves in part or as a whole (chlorosis) while the veins remain green. At a later stage the color of the affected areas changes to yellowish white; they become translucent and then take a dark color and eventually die (necrosis). In most cases the leaves are brittle and premature defoliation is observed, especially in fruit trees (see Figure 5).

Magnesium plays an essential role in the human and animal metabolism. It is a constituent of many enzymes, the key substances that regulate the life processes in the cells and organs of the body. Too low a Magnesium supply may lead to tetany (e.g. grass tetany, a lethal disease of dairy cattle), brain disturbances, muscular cramp, and eventually heart diseases.

Magnesium deficiency can be avoided if a food source contains sufficient Magnesium. The daily requirement is about 0.3-0.4g of Magnesium for an adult person. The magnesium needs of animals differ greatly. A dairy cow may require 3-6 g of magnesium per day, depending on the level of milk production. However, as the utilization of the magnesium contained in the forage is rather low (in young pasture grass only 10%), the actual quantity needed may become as high as 50 grams of magnesium per day or more. To assure an adequate supply of magnesium to dairy cattle, the forage should contain sufficient magnesium, at least 2 grams of magnesium per kg dry matter. The average Magnesium contents of some food and forage materials are given in Table 2.

At Thioguard, we are concerned with all things magnesium, so when we run across information like this we want to share it. There are many parallel benefits that magnesium provides to improve human, animal, and plant health, as well as improving biological water treatment.

Caustic Soda = Volatile Price & Volatile Chemistry

CAUSTIC SODA = CHEMICAL VOLATILITY AND PROCESS UPSET

Caustic Soda is a HIGHLY CORROSIVE CHEMICAL listed on the Special Health Hazard Substance List. Caustic Soda on contact can burn the skin and the eyes and can cause permanent lung damage through inhalation. Caustic soda in contact with water can create enough heat to ignite combustibles and the resulting fire will produce poisonous gases. THIOGUARD and THIOGUARD ΩMEGA-S technical grade magnesium hydroxide is an effective, non-hazardous alternative to Caustic Soda. By converting to THIOGUARD, wastewater utilities are able to eliminate hundreds of hazardous bulk tanker truck deliveries, thereby reducing insurance costs.

In addition, Caustic Soda freezes at a temperature of 52 degrees, rendering it useless for water treatment purposes, and creating additional hazards by creating increased pressure at valves with the potential unexpected eruptions or spills. When it comes to safety, Thioguard and Thioguard Omega-S technical grade magnesium hydroxide is clearly superior.

  • Caustic Soda (Sodium Hydroxide) is hazardous to use, detrimental to personnel safety and biological processes
  • Sodium addition to wastewater upsets flocculation, settling, clarification and dewatering processes, driving up needs for polymer or metal salt use.

CAUSTIC SODA = PRICE VOLATILITY

Caustic Soda is pricing is subject to a variety of pressures, from basic supply and demand issues to market manipulation – even international trade can cause price fluctuations. THIOGUARD technical grade magnesium hydroxide offers greater “price reliability,” and delivers a safe and effective alternative to Caustic Soda.

  • Budget Uncertainty
  • Challenging Contract Management when driven to force majeure re-pricing


THIOGUARD Takes the Cake… and Makes it Better.

For a nearly one million gallon a day plant in Lambertville, NJ the good news just kept on coming. First, they started using Thioguard  to condition their primary sludge to reduce odors from the plant. This worked so well, they began to ask, “Where else can Thioguard be applied?”

As the winds whipped in early Spring, it was discovered that a significant amount of odor was coming from the nearly quarter million gallon sludge holding tank at their site. Since Thioguard worked to reduce the primary sludge odors, they wondered if it would work for stored sludge waiting to be pressed.

After establishing a stable pH range of 7.5-8.0 s.u., with just a couple of gallons a day, odors were reduced to satisfactory levels… and then something very interesting happened. Not only were odors in the press building reduced, but the press cake was drier. On average nearly 20-40% drier.

Why? Thioguard is technical grade magnesium hydroxide: a buffered source of alkalinity that is used to increase pH. Elevated pH promotes better polymer performance. Not only that, but due to divalent cation bridging, the press supernatant quality can be clearer as well. Any remaining alkalinity is then returned in the supernatant to the headworks of the plant.

The Lambertville results were recently verified on a much larger scale through bench testing at a treatment plant in Newark, Ohio. The chart below illustrates expected typical annual cost savings in hauling and tipping after the addition of Thioguard at a 100 MGD plant. The bottom line? For every 1% improvement in cake solids, the plant would save approximately $214K in hauling and tipping costs. In multiple tests, the use of Thioguard consistently resulted in 5% to 13% improvement in cake solids with greatly reduced water weight. Drier cake solids means less to haul, and fewer loads translates directly into operational savings.

Nurturing the Brain with Magnesium

Magnesium is everywhere – it does not occur free in nature, only in combination with other elements, but it is the eighth most abundant chemical element in the Earth’s crust and the third most abundant element in seawater; it is even the ninth most abundant in the Milky Way. In the human body, magnesium is the fourth most abundant ion and the eleventh most abundant element by mass, being stored in bones, muscles, and soft tissues.

Magnesium is fundamental for health: it is essential to all cells and to the function of hundreds of enzymes, including enzymes that synthesize DNA and RNA, and enzymes involved in cellular energy metabolism, many of which are vital. Magnesium is involved in virtually every major metabolic and biochemical process in our cells and it plays a critical role in the physiology of basically every single organ.

Low plasma levels of magnesium are common and are mostly due to poor dietary intake, which has lowered significantly in the last decades. Magnesium can be found in high quantities in foods containing dietary fiber, including green leafy vegetables, legumes, nuts, seeds, and whole grains. But although magnesium is widely distributed in vegetable and animal foods, some types of food processing can lower magnesium content up to 90%. Also, the soil used for conventional agriculture is becoming increasingly deprived of essential minerals. In the last 60 years, the magnesium content in fruit and vegetables has decreased by around 20 to 30%.

Symptomatic magnesium deficiency due to low dietary intake in healthy people is not very frequent, but a consistently poor dietary supply of magnesium has insidious effects. Magnesium deficiency alters biochemical pathways and increases the risk of a wide range of diseases over time, namely hypertension and cardiovascular diseases, metabolic diseases, osteoporosis, and migraine headaches, for example.

In the brain, magnesium is an important regulator of neurotransmitter signaling, particularly glutamate and GABA, the main neurotransmitters by modulating the activation of NMDA glutamate receptors and GABAA receptors. It also contributes to the maintenance of adequate calcium levels in the cell through the regulation of calcium channels’ activity.

These physiological roles make magnesium an essential element in important neuronal processes. Magnesium participates in the mechanisms of synaptic transmission, neuronal plasticity, and consequently, learning and memory. Accordingly, increased levels of magnesium in the brain have been shown to promote multiple mechanisms of synaptic plasticity that enhance different forms of learning and memory, and delay age-related cognitive decline. Increased levels of magnesium in the brain have also been linked to an increased proliferation of neural stem cells, indicating that it may promote the generation of new neurons (neurogenesis) in adulthood. This is an important feature because neurogenesis is a key mechanism in the brain’s structural and functional adaptability, in cognitive flexibility, and in mood regulation.

Magnesium supplementation has also been shown to modulate the neuroendocrine system and to improve sleep quality by promoting slow wave (deep) sleep, which, among many other functions, is also important for cognition and memory consolidation.

Furthermore, magnesium may enhance the beneficial effects of exercise in the brain, since it has been shown to increase the availability of glucose in the blood, muscle, and brain, and diminish the accumulation of lactate in the blood and muscles during exercise.

But just as increasing magnesium levels can be beneficial, magnesium deficiency can have serious harmful effects.

Magnesium has important roles in the regulation of oxidative stress, inflammatory processes and modulation of brain blood flow. In circumstances of magnesium deficiency, all of these functions can potentially be dysregulated, laying ground for neurological disorders. Also, in a context of low magnesium availability in the brain, NMDA glutamate receptors, which are excitatory, may become excessively activated, and GABAA receptors, which are inhibitory, may become insufficiently activated; this can lead to neuronal hyperactivity and to a condition known as glutamate excitotoxicity. This causes an excessive accumulation of calcium in neurons, which in turn leads to the production of toxic reactive oxygen species and, ultimately, to neuronal cell death.

Magnesium deficiency has been associated with several neurological and psychiatric diseases, including migraine, epilepsy, depression, schizophrenia, bipolar disorder, stress, and neurodegenerative diseases. Magnesium supplementation has shown beneficial effects on many of these conditions, as well as in post-stroke, post-traumatic brain injury, and post-spinal cord injury therapies. This therapeutic action is likely due to its action in blocking NMDA glutamate receptors and decreasing excitotoxicity, in reducing oxidative stress and inflammation, and in increasing blood flow to the brain, all of which are determinant in the outcome of these conditions.

There are multiple benefits to be obtained from magnesium, both from a health promotion, and from a disease prevention and management perspective. The recommended daily intake of magnesium is of 320mg for females and 420mg for males. Too much magnesium from food sources has no associated health risks in healthy individuals because the kidneys readily eliminate the excess. However, there is a recommended upper intake level for supplemental magnesium, since it can cause gastrointestinal side effects. So, keep it below 350mg/day.